

E-OTD Location Technology Trial Phase I Results

EOTD Location Method

E-OTD Network Operation

- Mobile listens to bursts sent from neighboring BTSs
- Mobile records burst arrival times
- Position is triangulated from:
 - Coordinates of BTSs
 - Burst arrival time from each BTS
 - Timing differences between BTSs

3G Systems use E-OTD as the intrinsic method for position determination

E-OTD - Handset Implementation

Trial Description & Goals

Understand the accuracy of EOTD

- In suburban areas
- In commercial suburban areas
- In building / In car / Outdoor

What factors impact the performance of EOTD and how

- Effects of LMU density
- Effects of BTS visibility from mobile
- Effects of BTS visibility from LMU
- Effects of cell geometry
- Effects of LMU Antenna Placement
- Effects of mobile velocity

Trial Description & Goals

Trial Area

325 Km² trial area in Houston commercial/suburban setting

Equipment

- CPS E-OTD LMUs co-located with 19 contiguous BTS
- Sites comprised of rooftops and towers
- LMU Antennas
 - Rooftops: mag mount omni mounted on BTS cabinet
 - Towers: 9dbi omni mounted to ice bridge or equivalent, some mounted 10m up tower to improve line of sight and visibility

Mobiles

Mitsubishi handsets flashed with CPS EOTD software

MLC

- SUN E250 with software provided by CPS for location calculation and operation and maintenance of LMU network
- Messaging run over SMS in the VoiceStream Houston network

Trial Plan and Phase I Description

- Implementation / Deployment / Commissioning
 - Begin April 2000
 - Design LMU network
 - Customize the messaging interfaces in the network
 - Deploy LMUs with associated antennas and SMLC
 - Commission System through field testing
- Phase I Testing
 - Begin July 2000
 - Stationary testing in idle mode, in-car / outdoor
 - Involve GSMNA operators and equipment vendors
 - Invite operators and vendors to test July 31 August 11
 - Distribute all results and detailed report to trial participants by September 1

FCC Guidelines vs. Testing Methodology

- Phase I Testing Methodology
 - Trial area divided into 67 test grids
 - 4 random measurement locations per test grid to allow for uniform distribution
 - 5 individual measurements per location
 - 3 minutes between measurements to allow for independent results in idle mode
 - Over 1000 In-car and outdoor measurements in suburban radio environment collected
 - Data is collected by pressing a button on the handset and recording the returned position
 - The position is provided in real time
 - Testing period July 28th August 14th

FCC Guidelines vs. Testing Methodology

FCC Compliance Guidelines

- Testing allows scaling by actual 911 call distribution
- Allows 30 seconds for successive location fixes
- Moving measurements to be used when a suitable testing platform is available, this is in development presently

Conclusions

- The data presented does not accumulate measurements throughout a call to improve accuracy
- Stationary measurements are allowable
- No in-building measurements made
- Distribution of measurement locations in suburban radio environment representative of ~ 70% of wireless 911 calls
- Active mode operation with 30 seconds additional measurements will improve accuracy

Phase I Results: Outdoor Measurements

Phase I Results: In-vehicle Measurements

Phase I Results: All measurements

Phase I: Results Summary and Conclusions

All Measurements	Inside the vehicle	Outside the vehicle
58.6 % within 50 m	55.5 % within 50 m	61.8 % within 50 m
67.0 % within 57 m		
92.0 % within 100 m	92.4 % within 100 m	91.6 % within 100 m
97.5 % within 150 m	97.5 % within 150 m	97.6 % within 150 m

- •The results indicate that E-OTD can approach the handset accuracy requirements of the FCC in these areas
- •E-OTD appears, at this stage, to perform well in areas representing ~ 70 % of E911 calls
- •Full data set is 7m over the 50m accuracy limit
- •Full data set exceeds the 150m (95%) accuracy statistic
- •Full data set fully meets accuracy rules in VoiceStream waiver

